Create Triangle Mesh

If you are faced with the problem that you have a hole in a surface EnSight has no powerful tool to fill it. Think about the radiator grille of a car. If one has the request to create a clip plane within the grille geometry to calculate the flow for example, the plane tool wont help in most cases as it’s rectangular and radiator grills are often not rectangular.

This tool can create a triangle meshes within a closed spline. If you campare the result with the meshing of a point part it has two big advantages:

1. The mesh elements are connected

2. Point parts along splines are meshed with one row of triangles. Here we have multiple rows. This enables calculation and coloring on the new mesh.

The spline geometry should be circular or elliptic and as flat as possible. Convex or concave geometries might cause problems. If the geometry is elliptic the first spline point should be at a pointed area (Think about the two ends of an egg). The scipt can use an existing spline or you can create a new one. If you select the option new spline, the GUI becomes interactive. Just click along the surface with the left mouse button and check how the spline points get created. There’s a control field of the current number of splines in the script GUI. If you want to get rid of one or more spline points, just use the delete button within the GUI. The spline can be open. The code will create a final spline point to close it. This will be done on existing splines and on new splines. Furthermore you can map an existing fluid variable to the new surface.

When the create button was pressed EnSight will create a new case and geometry file in the current working directory. These files are loaded as an additional case

 

 

 

 

 

 

 

The attached script is a stand alone tool. You can run it via File > Command > Play. Just contact me if you want to add it to your user tools.

triangle_mesh_2013_04_07

Dynamic Range Plotter

Suppose that you have a transient domain, where you have some information at a high temporal frequency, but your time domain is relatively large. If you make a default plotter, the temporal range is too large to see the high frequency information. But, if you zoom in the time range, you are “fixed” to a particular time. Suppose you’d like to see both the higher frequency information, but also the whole time domain?

Python to the rescue again. Using Python, we can dynamically adjust the time range of the graph at each timestep… and thus create a plotter with a relatively small time “window”, but that window moves with the current timestep, so that you can see the whole time domain.

Here is a short example of what such a “dyanmic range plotter” would look like:

dynamic_range_plotter

Here is a short tutorial on using this python tool:

http://www.ceisoftware.com/wp-content/uploads/screencasts/dynamic_range_plotter/dynamic_range_plotter.html

And here is the tool itself:

dynamic range plotter python